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Abstract. Visual saliency models aim at predicting where people look.
In free viewing conditions, people look at relevant objects that are in
focus. Assuming blurred or out-of-focus objects do not belong to the
region of interest, this paper proposes a significant improvement and
the validation of a saliency model by taking blur into account. Blur
identification is associated to a spatio-temporal saliency model. Bottom-
up models are designed to mimic the low-level processing of the human
visual system and can thus detect out-of-focus objects as salient. The blur
identification allows decreasing saliency values on blurred areas while
increasing values on sharp areas. In order to validate our new saliency
model we conducted eye-tracking experiments to record ground truth of
observer’s fixations on images and videos. Blur identification significantly
improves fixation prediction for natural images and videos.
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1 Introduction

In image or video content, focal blur or out-of-focus blur occurs when objects
in the scene are placed out of the focal range imposed by the focal length of
the camera. This limitation is also used as an artistic effect by photographers to
reduce the depth of field to emphasize an object in focus. In the human visual
system objects need additionally to be projected onto the fovea, the part of the
retina that contains most of the visual cells, to appear sharp. Objects that are
not fixated appear blurred on the retina. Nevertheless, it has been shown that
blurring affects the way an observer will look at an image [1]. People will look
at objects in focus, and neglect blurred background.

Visual attention allows the human visual system to understand complex
scenes by successively focusing on interesting features or objects. Saliency mod-
els [2, 3] aim at predicting where an observer will look. They are often based on a
frequency analysis of images and extraction of features that contrast with their
surroundings. [4, 5] experimentally determine functions where contrast sensitiv-
ity is measured for an average observer. Those functions perform as band-pass
filtering for the contrast identification. Thus visual attention modeling already
introduces frequency selection that can be seen as blur differentiation. How-
ever, in [6] the authors refine previous assumptions by demonstrating that the



most attractive signal appears in medium frequencies. Consequently, blurred ar-
eas can still be salient. An interpretation of this is that the notion of saliency
and sharpness might not be processed at the same level in the human brain,
sharpness being identified in a second step. Indeed, because of the physiology
of the eye, and in particular the small size of the fovea, the observer does not
know if the object attended after next saccade is sharp or blurred on the screen.
Bottom-up saliency models do not currently detect blurred areas and will mark
out-of-focus objects as Region of Interest (RoI). Integrating blur detection to
refine the bottom-up saliency map and remove out-of-focus objects from RoI
is thus biologically plausible. An attempt of using blur detection to enhance
saliency models can be found in [1]. The authors use different state-of-the-art
saliency models and a blur identification algorithm based on an edge map, com-
bined with machine learning. They do not provide validation using ground truth
eye-tracking data. Besides, they present results for still images only.

This paper proposes two contributions: (i) a new saliency model that inte-
grates blur identification in order to more precisely detect RoI in images and
videos and (ii) a validation of such prediction improvement via eye-tracking on a
dedicated database with blurred images. One can notice that the blur detection
algorithm uses the same frequency analysis stage as the saliency model and thus
introduces very little computation cost overhead. The remainder of the paper is
organized as follows: section 2 describes the saliency model and the blur iden-
tification algorithm, then results are presented in section 3. Finally, conclusions
and perspectives are drawn in section 4

2 Visual attention model

The saliency model used is a spatio-temporal model of the bottom-up selective
visual attention, derived from [7]. In this paper, we present an improvement of
an existing spatial saliency model thanks to the identification of blur.

2.1 Bottom-up spatial saliency model

The spatial saliency model is described in [6]. It is based on the plausible neural
architecture of Koch and Ullman [8] and designed to be simple and computation-
ally efficient. Its performances are similar or even higher than state-of-the-art
models in terms of prediction.

The visual attention model uses a hierarchical decomposition of the visual
signal. Its synoptic is described in Figure 1. The YUV 4:2:0 color space is used.
It separates achromatic (Y) and chromatic (U: green-magenta and V: orange-
cyan) perceptual signals. This color space has been chosen because it takes the
human visual system into consideration and is commonly used in image and
video processing.

The first step of the model extracts early visual features from the image. A
9/7 Cohen-Daubechies-Feauveau (CDF) wavelet transform is used to separate
frequency bands and orientation ranges. The resulting multi-scale pyramid is
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Fig. 1. Bottom-up saliency model

composed of oriented contrast maps with limited frequency range and a low-
resolution image.

In the second step of the model, a Difference of Gaussian (DoG) modeling
the center-surround response of visual cells is applied on each oriented contrast
map (wavelet sub-band). Next, the orientation maps from each level are summed
together.

The final step is the fusion of these early feature maps. Two fusions are suc-
cessively applied: levels fusion and color channels fusion. Levels fusion operation
is an across-scale addition using successive bi-linear up-sampling and additions
of the per-pixel level maps. YUV components fusion keeps the maximum saliency
value between Y, U, and V for each pixel after normalizing with an empirical
maximum value taking into account the difference of amplitude between the
three channels. The output map is finally mapped in the range of 0 to 1.

2.2 Blur identification

The implemented blur identification method is a modified version of the method
proposed by Tong et al. [9] which uses the ability of wavelet transform in both
discriminating different types of edges and identifying sharpness from blur. In
our implementation, the same wavelet decomposition as the saliency model is
used in order to avoid additional computations. Moreover, the CDF wavelet
transform leads to a more precise frequency analysis than the Harr wavelets
used in [9]. From this decomposition, block-based blur values are computed,
leading to a map discriminating blurred from sharp areas (see Figure 2). For
each decomposition level, an edge map is computed as:

Ei,l = max
k∈Di

(√
LH2

k,l + HL2
k,l + HH2

k,l

)
, (1)

l being the current wavelet level (with the highest resolution level denoted l = 0),
i the current pixel, LH, HL and HH the wavelet sub-bands and D the squared



non-overlapping neighborhood such that it corresponds to a 2 × 2 block in the
smallest resolution level, 4 × 4 in the next, ... Then the final block-based blur
value is defined as:

0 (= blurred) if min
l∈[0,L−1]

Ei,l < Eblur

min

255, 4 ×
√ ∑

l∈[0,L−1]

(
E2

i,l

2l

) otherwise
(2)

L is the number of decomposition levels, and Eblur an experimental threshold
set to 5 in our implementation. The blur map values are then mapped in the
range of 0 (respectively blurred) to 1 (resp. sharp).
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Fig. 2. Wavelet sub-bands decomposition

Blur identification is used to improve RoI detection by removing saliency in
blurred areas, as these are considered to be visually unattractive areas. Thus,
saliency values of blurred areas need to be reduced, while sharp objects’ saliency
need to be emphasized. The final spatial saliency map is defined as:

Saliencyblur = Saliency × (.5 + Blur) (3)

where Saliency is the saliency map as described in section 2.1 and Blur is the
blur map as defined in section 2.2. With such a fusion, blur identification has an
impact on the final saliency map while the blur map is not totally trusted.

2.3 Spatio-temporal saliency model

The temporal model assumes the visual attention is attracted by motion con-
trast. Such contrast is deduced from the difference between local and global
motion. A fast hierarchical block-based motion estimator [10] is used to com-
pute local motion. Then, using a weighted least square optimization approach,
the global motion is deduced from block-based vectors with a parametric model.
The temporal saliency map highlights blocks that have a different motion relative
to the global motion.

The spatio-temporal saliency map is computed as the average of the spatial
and the temporal saliency maps. For still images, the saliency map is directly
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Fig. 3. Spatio-temporal saliency model

the output of the spatial saliency model as there is no temporal analysis. The
global synopsis of the spatio-temporal attention model is depicted in figure 3.

The next section presents results of the application of this algorithm to still
images and videos, and its validation on eye-tracking data.

3 Results

The presented model has been confronted to a ground truth of eye tracking
data with still images and video contents. Saliency maps and fixation positions
have been compared using both the NSS (Normalized Scan-path Saliency) met-
ric [11] and the AUC. The AUC (Area Under Curve) is a classification indicator
stemming from the ROC (Receiver Operating Characteristic) analysis. An AUC
value tending to 1 means a good agreement between the predicted and the ex-
perimental saliency maps. The AUC results highly depend on the smoothness
of the computed saliency map and the chosen threshold used to compute the
binary ground truth. The NSS has the advantage to normalize the salience per
scanpath: scanpaths with different number of fixations have the same weight. In
other words, every observer has the same impact on salience. Moreover, the NSS
gives more weight to areas more often fixated. We use both metrics anyway to
show that the results are not metric-biased.

Eye-movements of observers were recorded in free-viewing conditions using
an SMI RED 50 IView X eye-tracker with a 50Hz sampling frequency. Two
different experiments were conducted, one with still images and one with videos,
in order to validate the model in both configurations. Details are given below.

3.1 Still image database

25 volunteer subjects (11 females and 14 males) viewed 50 images1 with a reduced
depth of field thus naturally containing blur. All the subjects had normal or

1 Part of the photos were by courtesy of Nicolas Le Goff (http://dishio.eu). All rights
reserved.



corrected-to-normal vision. They were all naive to the purpose of the experiment.
Each image was presented during 5 seconds, in a random order, interleaved with
a neutral gray image containing a randomly placed black cross to reduce the
center bias of the first fixation. The resolution of the images was 800x600 pixels.
They have been manually selected on the internet from various topics. Figure 4
shows example images with fixation positions overlayed as heat map and their
corresponding saliency map computed with and without blur detection.

picture with
superimposed fixation

heat map

spatial saliency map
with blur detection

spatial saliency map

Fig. 4. Example image stimuli with corresponding fixation heat map and saliency maps

The proposed model improves fixation prediction. An important improve-
ment is seen on highly blurred pictures where the model without blur detection
gave too much importance to blurred areas. On pictures containing smooth or
homogeneous areas, the improvement is less visible because such areas are de-
tected as blurred. Table 1 presents average NSS and AUC values of the 50 images,
for the model without blur identification and the augmented model. Blur iden-
tification significantly improves the prediction performances (paired t-test with
p<0.001).

Average NSS values Average AUC values
no blur with blur paired t-test no blur with blur paired t-test

image database 0,83 0,99 4,4E-08 (***) 0.72 0.75 8.3E-08(***)
video database 0,98 1,04 0,005 (**) 0.70 0.71 0.001(**)

**t significant at p<.01 ***t significant at p<.001
Table 1. Average NSS and AUC values comparison of saliency model without and
with blur identification for image and video databases



3.2 Video database

The efficiency of the model has also been tested on 21 videos and compared with
gaze positions recorded from 30 volunteer subjects during free-viewing task. Se-
lected videos were mainly extracted from movie trailers. They did not contain
highly reduced depth-of-field content such as for the experiment with still pic-
tures. The proposed saliency model with blur detection significantly improves
fixation prediction in terms of NSS and AUC (paired t-test with p<0.01) (see
Table 1). The impact of blur identification on the video database is reduced
compared to the still image database because videos contain less blurred areas
than selected pictures. Moreover more significant improvements are averaged in
time with other frames where less improvement is obtained, thus reducing the
measured improvement.

Blur detection is efficient on close-up scenes where the background is usu-
ally out-of-focus. It works also well on wide shots where homogeneous areas are
detected as blurred leading to concentrate more salience on the RoI. Screen-
shots of selected videos with their corresponding fixations and saliency maps are
presented on Figure 5.
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Fig. 5. Video examples with corresponding fixation heat map and spatio-temporal
saliency maps

While blur identification improves fixation prediction on images or videos
where blurred areas are detected correctly, one must be careful with homoge-
neous areas. Indeed, those regions have no high frequencies, being detected as
blurred areas, but they might be part of RoI where fixations are located (i.e.
interior of an object). Detection of homogeneous areas associated with a special
treatment is thus necessary to prevent erroneous results.

In this paper, the detection of blur is performed under the assumption of focal
blur. Motion blur generates blur in the direction of the motion. This type of blur
may not be detected by our blur identification method because it affects only one



direction of the wavelet transform coefficients. A motion blur detection taking
advantage of already computed wavelet coefficients and motion information in
the temporal branch may thus be of interest in a fixation prediction context.

4 Conclusions

In this paper, we presented a new saliency model that uses blur detection to
improve fixation predictions. Low-level saliency models can detect blurred areas
as salient. This is consistent with the low-level models of the human visual sys-
tem, but blurred areas are rarely of interest. Identifying sharp from blurred areas
and lowering the saliency value on blurred areas improves saliency model perfor-
mances for images and videos. Eye-tracking experiments have been conducted
to create a ground truth of human fixations on images and videos naturally con-
taining blur. A significant improvement has been obtained with the proposed
algorithm. As expected, the biggest improvements are obtained for content with
a small depth-of-field, where the background is highly blurred. Currently, the
blur identification algorithm assumes focal blur only and does not detect motion
blur. Further improvement of performances could be achieved with motion blur
detection.
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